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Abstract-This work is concerned with the determination of the effective properties of transversely
isotropic fiber composites made up of two rigid-perfectly plastic phases in prescribed volume
fractions. The phases are assumed to satisfy incompressible, isotropic yield criteria of the Mises
type. To study the behavior of these composites we make usc of variational principles, recently
developed by Ponte Castaneda (1991, J. Mech. Phys. Solids 39, 45--71), that provide a method for
generating estimates for the effective properties of nonlinear composites from corresponding esti­
mates for the effective properties of linear composites. We demonstrate that this method allows us
to obtain simple expressions for the effective yield functions of rigid-perfectly plastic composites.
Explicit results, corresponding to the Hashin-Shtrikman bounds, the self consistent and the gen­
eralized self consistent estimates, and the composite cylinder assemblage model are obtained for the
class of rigid-perfectly plastic tiber compositcs. These estimates exhibit the existence of two distinct
yielding modes, in agreement with corresponding experimental results.

I. INTRODUCTION

Over the years, different approaches have been employed to study the effective behavior
of rigid-perfectly plastic composites. Among the first results available in the literature, we
may cite the work of Drucker (1959) who made use of plasticity limit theorems to establish
bounds for the effective behavior of perfectly plastic, nonhomogeneous materials. Shu and
Rosen (1967) and Majumdar and McLaughlin (1975) determined upper and lower bounds
for the effective yield strength domain of fiber composites by application of these plasticity
limit theorems. A well-known estimate for the overall strength domain for rigid-perfectly
plastic matrices weakened by cylindrical voids was introduced by Gurson in (1977). Ponte
Castaneda and deBotton (1992) determined bounds and estimates of the Hashin-Shtrikman
(1962) type for statistically isotropic and fiber-reinforced composites by making use of a
variational method proposed by Ponte Castaneda in (1991). By application of a different
method, Suquet (1993) obtained various bounds and estimates for the effective tensile yield
strength of statistically isotropic composites. Olson (1994), by application of yet a different
method, also obtained bounds of the Hashin-Shtrikman type for the effective yield stress of
statistically isotropic composites. In other cases, numerical schemes were used to determine
estimates for the effective strength domain of rigid-perfectly plastic composites with specific
microstructures [see, for example, Bao et al. (1991)].

In this work, we obtain estimates for the effective yield strength domain of two-phase
rigid-perfectly plastic fiber composites with statistically isotropic distribution of the fibers
in the transverse plane. To this end, we utilize a variational procedure developed by Ponte
Castaneda (1991, 1992) that enables the generation of bounds and estimates for the effective
properties of nonlinear composites in terms of optimization problems involving cor­
responding bounds and estimates for the effective moduli of appropriate families of linear
comparison composites. Applications of the procedure to obtain various bounds and
estimates for the effective properties of nonlinear, statistically isotropic and incompressible
fiber composites were carried out by Ponte Castaneda in these two works. DeBotton and
Ponte Castaneda (1993) made use of this procedure to determine bounds and estimates for
the effective behavior of nonlinear, fiber-reinforced composites. The procedure was also
applied to the class of rigid-perfectly plastic composites by Ponte Castaneda and deBotton
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(1992), and here, we make use of these latter results to develop new, simple estimates for
the effective yield functions of two-phase composites.

Five types of estimates for the effective yield functions of fiber-reinforced composites
will be considered. The first two estimates are the Hashin-Shtrikman upper bound and
lower estimate which were determined previously by Ponte Castaneda and deBotton (1992).
These two estimates are obtained from the linear Hashin-Shtrikman upper and lower
bounds introduced by Hill (1964) and Hashin (1965). The third estimate corresponds to
the generalized self consistent estimate first proposed for linear elastic fiber composites by
Hermans (1967) and later modified by Christensen and Lo (1979). The significance of this
estimate is centered on the fact that in some approximate way the interactions among the
fibers are taken into account. In the context of linear elasticity, this method was found to
provide satisfactory approximations for the effective moduli of linear elastic composites.
The fourth estimate is obtained from the composite cylinder assemblage model of Hashin
and Rosen (1964). This model corresponds to a space filling assemblage of composite
cylinders in various diameters, each of which is made up of a fiber embedded in a concentric
matrix shell. The fifth estimate is the self consistent estimate which is obtained from the
corresponding linear estimates of Hill (1965). In spite of the fact that these self consistent
estimates always lie between the Hashin-Shtrikman bounds, there are some limitations on
their range of applicability, in particular, when the contrast between the properties of the
phases is large [see related discussion in Hashin (1983)].

Explicit calculations are carried out for representative classes of fiber-reinforced com­
posites comprised of two isotropic phases of the Mises type with different tensile yield
strengths. The resulting estimates for the effective yield functions of the composites are
presented in terms of yield surfaces in the space of the three incompressible transversely
isotropic invariants of the stress tensor. These estimates are compared with corresponding
results obtained by application of other methods and with available experimental results.

2. THE EFFECTIVE YIELD STRENGTH OF TWO-PHASE COMPOSITES

In this section we consider the class of two-phase rigid-perfectly plastic composites
with periodic microstructure. The effective properties of composites belonging to this class
can be determined by considering a unit cell of the microstructure Y. For simplicity, we
will restrict ourselves to the class ofcomposites made up of incompressible, isotropic phases
of the Mises type with yield strengths k(l) and k(21, in prescribed volume fractions c(l) and
C(2) = l-c(l), respectively. In terms of a position vector y defined over the unit cell, the
strength domain of the composite P is given by the set

P(y) = {a(Y)lae~k(y), with k(y)=k(r) if YEy(r), r= 1,2}, (1)

where ae = j~a" a' is the equivalent stress, a' is the deviatoric part of a, and }'II) and }'I2l

are the regions of the unit cell occupied by phases I and 2, respectively. The effective
strength domain of the composite may be described by the set (Suquet, 1983)

p= {L:'13a(y), divya=O, a(Y)EP(Y), anisantiperiodic, La(Y)dY=~}, (2)

where ~ = Sy a(y) dy is the average stress tensor and n is the unit outward normal to the
boundary of Y.

Alternatively, the strength domain of the composite may be represented by means of
the support function of P,

n(y, d) = sup {a' d},
aEF(y)

(3)

which corresponds physically to the plastic dissipation function associated with the rate of
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deformation tensor dey). In particular, for composites with incompressible, isotropic phases
of the Mises type,

(4)

where key) is given in egn (I), de = J~d"d', d' is the deviatoric part of d, dm is the
hydrostatic component of d, and <>0 = 0 if dm = 0, or Do = 00 otherwise. In terms of the
support function we have that

F(y) = dom {n*(y, O')},

where n*(y, 0') = sup {O" d -n(y, d)} is the Legendre-Fenchel polar of n, and
d

dom{n*(y,O')} == {O'ln*(y,O') < oo},

(5)

(6)

(Van Tiel, 1984, §§ 6.1 and 5.11). The effective support function it is defined via the relation

it(D) = infI n(y,d)dy,
dEK y

(7)

where D = Jyd(y) dy is the average strain-rate tensor, and the infimum is taken over the set
of kinematically admissible strain rates,

K = {d 13 v, d = HVv+ (VV)T], y = Dy+v', and y' is periodic}. (8)

The corresponding effective strength domain Pmay be determined, via relations analogous
to the local relations (5) and (6), from the Legendre-Fenchel polar of it.

We note that, in some cases, applications of egns (2) or (7) can be made to obtain
bounds or estimates for the effective strength domain. For instance, Majumdar and
McLaughlin (1975) and de Buhan et af. (1991) obtained bounds for the effective strength
domain for certain classes of fiber composites under plane stress conditions and general
loading conditions, respectively. However, in most cases, the task of obtaining expressions
for the effective yield strength domains from these expressions is very complicated. For this
reason, in the following section, we make use of an alternative variational procedure that
enables us to obtain relatively simple expressions for bounds and estimates for the effective
yield strength domain.

3. ESTIMATES FOR THE EFFECTIVE YIELD STRENGTH OF TWO-PHASE COMPOSITES

The developments followed in this section are based on a general variational procedure,
originally developed by Ponte Castaneda (1991, 1992), for estimating the effective properties
of composite materials with arbitrary nonlinear behavior of the constituent phases. This
variational procedure was applied to the class of rigid-perfectly plastic composites by Ponte
Castaneda and deBotton (1992), and here, we advance and obtain additional results for
this particular class of composites.

The procedure is based on the following representation for the support function n
(Ponte Castaneda and deBotton, 1992), namely,

where

n(y,d) = inf {w(y,d)+v(y,,u)}
J1~O

(9)
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(10)

is the local dissipation function ofan incompressible, isotropic, linear comparison composite
with viscosity coefficient /1, and

v (Y,/1) = sup {n(y,d)-w(y,d)}.
d

(11)

Equation (9) can be substituted into eqn (7) to obtain an alternative representation for the
effective support function in the form (Ponte Castaneda, 1992),

where

ft(D) = inf {IV(D)+J v(y,/1)dY},
!'(y):;' 0 Y

IV (D) = j~lLw (y, d) dy,

(12)

(13)

is the effective dissipation function ofa linear, heterogeneous comparison material governed
by the local dissipation function w of eqn (10).

We stress that, in practice, it is difficult to obtain a solution for the variational
procedure introduced in eqn (12) since the viscosity coefficient /1 is an arbitrary function of
the position vector. Nevertheless, a simple expression for an upper bound for it can be
obtained by restricting the function /1 to the class of piecewise constant functions with a
different constant in each phase (Ponte Castaneda, 1992). This upper bound may be
expressed in the form

(14)

where IV is given in eqn (13), and

(15)

In eqn (14), besides the advantage we gained from the relaxation of eqn (12) into a
two-dimensional minimization problem, we also have that IV corresponds to the effective
dissipation function of a linear comparison composite with two homogeneous phases dis­
tributed similarly to the two phases in the rigid-perfectly plastic composite. The two
incompressible, isotropic phases in this comparison composite are characterized by the
viscosity coefficients /1(1) and /1(2) and are prescribed in volume fractions e(l) and e(2),

respectively. Bounds and estimates for IV can be found in the literature by analogy of the
governing equations for linear viscous materials and linear elastic materials. However, we
should note that because of the inequality introduced in eqn (14), upper bounds for IV will
be translated into rigorous upper bounds for ft, but lower bounds for ~tl will provide only
estimates for the corresponding lower bounds for ft.

From the variational procedure in eqn (14), first introduced by Ponte Castaneda and
deBotton (1992), we proceed to obtain a simple estimate for the effective strength domain
of the composite. This is obtained via the following relation between ii and its Legendre~

Fenchel polar ii* (Ponte Castaneda, 1992), namely,
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(16)

where 11'* is the Legendre~Fenchelpolar of ~v, and where we made use of eqn (15) for the
functions v(r). We note that fj* is a lower bound for ft*.

In the context of linear elasticity, it can be shown that ~v* is equal to the effective
complementary energy function (in its rate form) of the linear comparison composite, and
thus, it may be expressed in the form

w*(l:) = ~l:' (!VII), (17)

where !VI = !VI(.u(I),.u(2» is the effective compliance tensor. We further note that in many of
the estimates for !VI, and particularly in those that will be used in this work, by appropriate
change of variables we may write

(18)

where IiI is a dimensionless, fourth order tensor and p = .u0)!JP). By making use of eqns
(17) and (18) in eqn (16) we have that

where

_ {I _ }II*(l:) = sup -- fP(l:) ,
/l{l);"O .u(l)

(19)

(20)

From eqn (19) it is clear that fj* < ex; only if $(l:) is non-positive, and hence, on account
of eqns (5) and (6), we obtain the following estimate for P, namely,

(21)

We note that since fj* is a lower bound for ft*, the effective strength domain of the
composite is contained in the set P (i.e. PcP).

Next, we recall that the boundary of Pin the l:-space defines an effective yieldfunction
for the composite in the form ¢(l:) = O. Accordingly, the boundary of P provides an
estimate for the effective yield function, and from the convexity of eqn (20), it follows that
this boundary is characterized by the relation

$(l:) == O. (22)

Equation (22) provides a procedure for estimating the effective yield functions of rigid­
perfectly plastic composites in terms of a one-dimensional minimization problem over
corresponding estimates for the effective compliance tensor of linear comparison composites
(with identical distribution of the phases). We stress that since fj* ~ ft*, estimates for $
from upper bounds for !VI will bound regions that are strictly larger than the region bounded
by ¢, and thus, we may regard them as upper bounds for the effective yield function. On
the other hand, estimates for $ from lower bounds for !VI will bound regions that are not
guaranteed to be contained in the region bounded by ¢. (In this sense, they are not rigorous
lower bounds.)

SAS 32-12-H
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We notice that Suquet (1993) proposed a different method for estimating the properties
of rigid-perfectly plastic composites, and demonstrated that his method provides a one­
dimensional minimization procedure for estimating the effective yield stress of statistically
isotropic composites. The results obtained via his procedure may be recovered by appli­
cation of eqn (22) to the particular class of statistically isotropic composites.

Finally, before we specialize the above results to the class of fiber-reinforced
composites, we note that if phase 2 is rigid (i.e. formally k(2) = CXJ), eqn (20) for $ reduces
to the explicit form

(23)

which follows from the fact that in this case the optimal value for the minimization variable
is p = O.

4. APPLICAnONS TO FIBER COMPOSITES

We make use of the variational procedure in eqn (22) to obtain bounds and estimates
for the effective strength domains of fiber-reinforced composites with statistically isotropic
distribution of the fibers in the transverse plane. To this end, we require an expression for
the effective complementary energy function w* of incompressible, linear elastic fiber
composites with similar microstructure. Such an expression can be written in the form

(24)

where fl.d' fl." and fl.p are the three shear moduli that suffice to characterize the behavior of
such transversely isotropic materials (Lipton, 1992),

L:d = H~tr (~) - n· (~D)],

L:n = J3R~D) . (~D) - [D· (~DW],
'0' _ / '0'2 '0'2 '0'2
L..p-yL..e-L..d-L..",

G(L:22 +L: 33 -nil)}

{J3(L:T2 +L:L)}

{J3[L:~3 +~(L:22 -L:33 )2]}

(25)

are the three (incompressible) transversely isotropic invariants of order two or less of~, D
is a unit normal aligned with the fibers aDd L:e is the equivalent stress. (Given in brackets
are the expressions for these invariants for the choice of n aligned with the 1 direction.)
Physically, L:d corresponds to axisymmetric loading (aligned with D), L:" to shear along the
fibers, and L:p to shear transverse to the fibers.

By making use of eqn (24) in eqn (20), we obtain the following estimate for the effective
yield function for the class of rigid~perfectlyplastic fiber composites, namely,

(26)

where, we recall that p = /l(1)1f./ 21 . We note that $ depends only on the three transversely
isotropic invariants of~, and thus, to obtain a complete description of the six-dimensional
yield surface in the stress space it is sufficient to know its projection on the three-dimensional
(L:d , L:m L:p)-space.

As mentioned in the introduction, we will consider five estimates for the effective yield
strength of fiber composites corresponding to the Hashin-Shtrikman (HS) upper and lower
bounds, the generalized self consistent (GSC) estimate, the composite cylinder assemblage
(CCA) model, and the self consistent (SCS) estimate. Estimates for the three independent
shear moduli fl.d' fl." and fl.p from the five models are given in the appendix, and upon
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substitution of these estimates into eqn (26), the corresponding estimates for the effective
yield functions $(HS+), $(HS-), $(Gscl, $(CCA) and $(scsl, are obtained.

In general, it is not possible to derive explicit expressions for the five estimates for the
effective yield function, but, on the other hand, numerical results can be calculated readily.
Representative results for two composites with volume fraction of the fibers C(2) = 0.45,
and different values for the ratio k(2)jk(l) are shown in Figs 1 and 2. Figures I(a) and l(b)
show, respectively, the intersections with the (Ld' Lp ) and the (Lm Lp ) planes of the estimates
for the effective yield surface of a fiber composite with k(2)jkllJ = 1.65. Figures 2(a) and
2(b) show, respectively, the same intersections of the estimates for the effective yield surface
of a fiber composite with k(2)jk(1) = 7. In all figures, the outer and inner continuous curves
correspond to the upper HS bounds and the estimates for the lower HS bounds, respectively;
the short dash curves to the GSC estimates; the long dash curves to the CCA results; and
the dashed-dotted curves to the SCS results.

The intersections of these estimates with the (Ld' Ln)-plane may be deduced from Figs
I (a) and 2(a) as follows. First, we recall that the expressions for the effective longitudinal and
transverse shear moduli from the HS upper bound are similar, and hence, the intersections of
$(HS+) with the (Ld' Ln)-plane and the (Ld' Lp)-plane are identical. We also note that the
same is true for the estimates $(HS-) and $(SCSJ. Next, we note that the expressions for fln
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of the estimates for the effective yield surfaces of rigid-perfectly plastic fiber composites in volume
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from the GSC and the CCA estimates arc similar to the expression for p" from the HS
lower bound, and consequently, the intersections of cPiGSC1, cP(CCi\1 and cP(HS) with the
(L", Ln)-plane are identical. Thus, it suffices to consider only the intersections of the five
estimates with the (Ld, LI')-plane and the (Lm LI')-plane, recalling that the intersections of
cP(GSC) and cPiCCA) with the (L", Ln)-plane are similar to the intersection of cP

iliS
I with the

(L", LI')-plane.
For comparison, also shown in Figs I and 2 are the trivial isotropic upper bounds

obtained from the classical principle of minimum work (analogous to the Voigt bound in
linear elasticity). The innermost dotted curves correspond to lower bounds for the effective
yield strength domains obtained by de Buhan cl af. (1991) by assuming, in eqn (2), a
piecewise constant trial stress field satisfying the optimization constraints. In terms of the
three transversely isotropic invariants, the associated lower bound for the effective yield
function cP

iLB
) may be expressed in the form,

L,~+L/~ < (k(II)2,

L;+LJ~ = (k i )I)2.

(27)

We note that under plane stress loading conditions, where the loading plane is aligned with
the direction of the fibers, the above expression is completely equivalent to the lower bound
introduced by Majumdar and McLaughlin (1975). This is anticipated since the trial stress
field assumed by de Buhan cl af. (1991) reduces to the corresponding stress field determined
by Majumdar and McLaughlin (1975) for the plane stress case. Interestingly, eqn (27) is
reminiscent of the exact expression for the effective yield function for laminated composites
obtained by Ponte Castaneda and deBotton (1992).

We observe that according to the five estimates the principal yield stress along the L"
axis (when Ln = LI' = 0) coincide with the trivial upper bound, and may be expressed in
the form

(28)

This results from the fact that the expressions for p(f, obtained from the corresponding five
estimates for the class of linear fiber composites, agree with the classical Voigt bound.
Additionally, as mentioned earlier, the GSC and CCA estimates for the principal yield
stress along the Ln axis (when I'd = LI' = 0) agree with the corresponding estimate from the
HS lower bound.

In Figs I (a) and I(b), that correspond to a composite with small ratio of the yield
strength of fibers to that of the matrix, the estimates for the effective yield surface are
almost isotropic and the principle stresses along the three axes are very close to the classical
upper bound (dotted curves). This suggests that a quadratic interpolation between the three
principle yield stresses, in the form of Hill's (1948) extension of the Mises yield criteria to
slightly anisotropic materials, may be used to approximate the effective yield functions of
fiber composites in this limit. Interestingly, we note that the CCA estimate (long dash
curves) violates the HS upper bound (outer continuous curves) when the transverse shear
Lp is the dominating loading mode. The curves from the SCS estimate are not shown in
these two figures since they are disposed almost on top of the curves for the HS upper
bound.

The differences between the five estimates for the effective yield function become more
noticeable when the ratio ki21/kill increases [e.g. Figs 2(a), (b)]. In particular, we note that
while the intersection of cP

iHS + 1 with the (L", LI')-plane resembles the classical upper bound,
the intersections of cP(HS-), cP(CiSCI and cPiCCA ) with the (L", LI')-plane are characterized by
two distinct sections, a flat section parallel to the Ld axis and a curved part associated with
large axisymmetric loads. The flat section corresponds to an overall yielding of the com­
posite due to matrix yielding in shear loads along or transverse to the fibers, and the other
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section to simultaneous yielding of the matrix and the fibers under axisymmetric loads. In
spite of the fact that the yielding mechanism is only one of the sources of failure in
composites, it is interesting to note that the prediction of two different yielding modes is
reminiscent of the predictions of Hashin (1980) who argued, on physical grounds, that the
failure surfaces of fiber composites are composed of two primary failure modes, a matrix
mode and a fiber mode. We also note that the prediction of a matrix yielding mode for
fiber composites with plastically deforming matrices is in good agreement with experimental
results of Dvorak et al. (1988) for boron-reinforced aluminum composites.

The lack of a flat section in the intersection of $IHS+I with the (Id , Ip)-plane can be
motivated via the following alternative interpretation for the HS upper bound. First, we
recall that Lipton (1992) demonstratcd that for the class of linear, incompressible trans­
versely isotropic fiber composites the Hashin-Shtrikman bounds are optimal, that is, there
are specific microstructures that attain the bounds. In particular, the upper bound is attained
by a fiber composite in which the stiffer phase plays the role of the matrix and the softer
phase that of the fibers. Therefore, we may regard the Hashin-Shtrikman upper bound for
It'* as an estimate for the effective energy function of a linear fiber composite with stiff
matrix weakened by softer fibers. This alternative point of view can be extended to the class
of rigid-perfectly plastic fiber composites since the expression for $IHS+ I was obtained from
the linear bound. Consequently, we may regard $IHS-) as an estimate for the effective yield
function of a fiber composite made up of a matrix with yield strength k(2) and fibers with
yield strength kill, such that k(21 > klli. Clearly, it is unlikely that such a composite will
exhibit a matrix yielding mode in which only the stiff matrix phase yields.

An analogous, but opposite. interpretation can be given to the HS lower estimate by
following the same steps followed for the HS upper bound. Thus. we may regard $(HS-l as
an estimate for the effective yield function of a fiber composite made up of a matrix with
yield strength kill and fibers with yield strength k(2). such that k(2) > k(l). This interpretation
puts thc HS lower estimate on an equal footing with the GSC and the CCA estimates in
the sense that these three estimates correspond to the class of fiber composites with soft
matrices reinforced by stiffer fibers.

We observe that the yield surface associated with the SCS estimate bounds a volume
of the stress space which is larger than the corresponding volumes bounded by the HS -,
the GSC or the CCA estimates. (In particular. despite the fact that the CCA curve in Fig.
2(a) bounds a region larger than the region bounded by the SCS curve, from Fig. 2(b) we
can deduce that the SCS estimate bounds a volume larger than the volume bounded by the
CCA estimate.) In contrast with the other four estimates. in the SCS model the phases can
not be identified with a matrix phase and a fiber phase [a property inherited from the fact
that the linear SCS estimate is invariant to phase properties interchange, Hashin (1983)].
Nevertheless. as will be demonstrated in the sequel. if the contrast between the yield stresses
of the two phases is large and the volume fraction of the stiffer phase is small, the SCS
estimate predicts an overall yielding of the composite due to yielding of the soft phase in
shear transverse or along the fibers.

Figure 3 shows various estimates for ~" the principal yield stress along the II' axis, as
functions of the volume fraction of the fibers (2) for a fixed ratio k(2)/klll = 5. As outlined
before, the corresponding estimates for the principal yield stresses f" and En can be easily
extracted from this plot. It is interesting to note that while the curves for the classical upper
bound. the HS upper bound and the SCS estimate tend towards the fibers yield strength in
the limit as el21 approaches I, this is not the case with the other three estimates that
correspond to the class of fiber composites with a soft matrix phase. We note that similar
observations were made by Ponte Castaneda and deBotton (1992) and Suquet (1993) in
connection with analogous estimates for the effective yield stress of statistically isotropic
composites.

The dependence of the estimates for the principal yield stress ~, on the ratio kI21 /k(]1
for a fixed volume fraction of the fibers (2) = 0.3 is shown in Fig. 4. Once again, this plot
is reminiscent of corresponding plots obtained by Ponte Castaneda and deBotton (1992)
and Suquet (1993) for the effective yield stress of statistically isotropic composites. The
horizontal asymptotes of the curves from the GSC, the CCA, the SCS and the HS-



1752 G. deBotton

5,.-------------------,.

/

4

s.:
...... 3

c.
l~

2

.. (f'

'I

'//1
. /, I

. '~ ;' .:
~ I

I

/ I

/ I

/ I

/ /

e(2)

Fig. 3. Estimates for the principal yield stress f p as functions of the volume fraction of the fibers
e(l) for a fixed ratio k(l)lk() = 5. The continuous upper and lower curves correspond to the estimates
obtained from the HS upper and lower bounds, the short-dash curve to the GSC estimate, the long­
dash curve to the CCA estimate, the dashed-dotted curve to the SCS estimate, and the dotted curve

to the classical upper bound.

estimates indicate that for large enough values of k(2) Ik(l) the principal stresses I p (and In)
become independent of k(2). This is of course in agreement with our previous observation
concerning the existence of a matrix yielding mode for composites with soft matrices
reinforced by considerably stiffer fibers.

In fact, the existence of a matrix yielding mode suggests that if k(2) Ik(l) > {3, for some
{3 > I, the intersection of the effective yield surface with the (I'm I'p)-plane is independent
of the fibers yield strength. The expressions for {3(HS-), {3(GsC), {3(CCA) and {3(SCS) for which the
intersections of cP(HS -), cP(GsC), cP(CCA) and cP(SCS) with the (I'no I'p)-plane become independent
of k(2) are,

2,.-------------------,
e(2) = 0.3

1.8

1.4

.:1

1.2 .~::-:'

2 3 4 5
k(2) Ik(!)

Fig. 4. Estimates for the principal yield stress ~ as functions of the ratio k(2)jk(l) for a fixed volume
fraction of the fibers ell) = 0.3. The continuous upper and lower curves correspond to the estimates
obtained from the HS upper and lower bounds, the short-dash curve to the GSC estimate, the long­
dash curve to the CCA estimate, the dashed-dotted curve to the SCS estimate, and the dotted curve

to the classical upper bound.
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(29)

(30)

where tJ = JI-12e 2 +24e3 -14e4 +e8
,

j3(CCA) = _2_
I-e

and

I +2e+3e2 +2e3 +4e4

I-e+ 5e2 +e3
(31 )

j3
(SCS) = 2(1 - c) 0 5, e < . ,

1-2e
(32)

where, for simplicity, in eqns (29)-(32) e = e(2) is the volume fraction of the fibers. The
above four estimates for j3 versus the volume fraction of the fibers are plotted in Fig. 5. We
note that in the limit e(2) = 0 all four estimates agree. However, while according to the
GSC, the CCA and the SCS predictions j3 increases as the fiber volume fraction increases,
according to the HS lower estimate the value of j3 decreases.

We also note that for fiber composites with volume fraction of the fibers e(2) < 0.5 and
k(2) /k(1) > 5, three estimates predict that the intersection of the effective yield surface with
the (I'm I'p)-plane is independent of k(2). Since this is the case for most fiber-reinforced
composites, it follows that usually the intersection of the effective yield surface with the
(I'm I'p)-plane is identical to the corresponding intersection of the effective yield surface of
a fiber composite with rigid fibers (and identical distribution of the fibers). This class of
fiber composites is dealt with in the following section.

C(2)

Fig. 5. Estimates for fJ = ki2l/kill for which the intersection of the yield surface with the (Lm L p)­

plane becomes independent of k(2l plotted as functions of the fibers volume fraction C(2). The
continuous curve corresponds to the estimate for the HS lower bound, the short-dash curve to the
GSC estimate, the long-dash curve to the CCA estimate, and the dashed-dotted curve to the SCS

estimate.



1754 G. deBotton

5. APPUCAnONS TO FIBER COMPOSITES WITH RIGID FIBERS

We consider the class of fiber composites made up of rigid-perfectly plastic matrices
reinforced by rigid fibers. The yield surface bounding the strength domain of these com­
posites may be described in the (I'd' I'll' I'p)-space as an infinitely long cylinder whose
generatrix is aligned with the I'aaxis, and thus, it is completely characterized by the cross­
section of the cylinder on the (I'n, I'p)-plane.

As demonstrated in section 3, explicit estimates for the effective yield function can be
easily generated by letting p = 0 in eqn (26). By doing so, we obtain the following
expressions for the yield surface according to the four estimates, namely,

I [(1')2 (I' )2]1)iHS -) - __ __" + _I' -I
- I +e kill k(l) ,

1)(GSC) = ~__ (~)2 + (1-e)3 (~)2_L
1+e kil) 11-2e+6e2 -4e3 k(l) .

where 11 = J I - 12c2+24c 3
- 14e4 +e8

,

and

(33)

(34)

(35)

-(SCSI _1-2e[(I'.n)2 (l'p)2]<P --- -- + - -I
I-e kll) k(l) ,

e < 0.5. (36)

In eqns (33)-(36), e = e(2
) is the volume fraction of the fibers phase. The HS upper bound

for the effective yield function, as well as the SCS estimate for volume fraction of the fibers
e(2) ? 0.5, become boundless for this class of composites.

We note that for the class of fiber composites discussed in the previous section, when
the ratio k(2)/ki 11 is greater than /3(HS-l, /3iGSC), /3(CCAl or /3(scsl, eqns (33), (34), (35) or (36)
provide the expressions for the intersections of the corresponding estimates for the effective
yield surface with the (I'll' I'p)-plane. Thus, for example, the intersections of the estimates
1)(HS-i, 1)iGSC) and 1)iCCA ) with the (I'll' I'p)-plane given in Fig. 2(b) can be obtained from
eqns (33), (34) and (35) by letting e(2) = 0.45.

To some extent, the yield strength domain of metal matrix composites reinforced with
strong, brittle fibers may be approximated by the yield strength domain of composites made
up of rigid-perfectly plastic matrices reinforced by rigid fibers. This approximation, which
neglects the effects of compressibility and of the linear region in the stress-strain curve,
make sense only when the ratio of the ultimate stress of the fibers to that of the matrix yield
strength is very large. Clearly, the yielding of the composite due to axisymmetric loads can
not be accounted for in this approximation.

Comparison of the estimates in eqns (33) through (36) with corresponding exper­
imental off-axis uniaxial tensile results for aluminum matrices reinforced with boron fibers
is shown in Fig. 6. We note that in terms ofan off-axis uniaxial tensile load I', the expressions
for the transversely isotropic invariants I'n and I'p are

(37)
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Fig. 6. Comparison between experimental estimates for the off-axis tensile yield strength of boron­
reinforced aluminum composites and corresponding estimates for a rigid~perfectly plastic matrix
reinforced with rigid fibers in volume fraction C(2) = 0.45 plotted as functions of the off-axis loading
angle e. The continuous curve corresponds to the HS lower estimate; the short dash curve to the
GSC estimate; the long dash curve to the CCA estimate; the dashed-dotted curve to the SCS
estimate; the dotted curve to the lower bound from eqn (38); the dark squares to estimates extracted
from experimental stress~strain curves of Pindera and Lin (1989); and the triangles to experimental
estimates of Kenaga et ai. (1987). A value of 48 MPa was assumed for the yield strength of the

aluminum matrix.

where () is the angle between the tension direction and the fiber direction (see Fig. 6). By
making use of eqns (37) in eqns (33) through (36), explicit HS-, GSC, CCA and SCS
estimates for the effective off-axis tensile yield strength of the composite are obtained.

In Fig. 6, the continuous curve shows the HS lower estimate for the effective off-axis
tensile yield strength of a matrix with yield strength k(l) reinforced by rigid fibers in volume
fraction C(2) = 0.45 as a function of the off-axis loading angle e. The short and long dash
curves depict the corresponding GSC and CCA estimates, respectively, and the dashed­
dotted curve corresponds to the SCS estimate. The dark squares correspond to estimates for
the effective off-axis tensile yield strength ofa boron-reinforced 6061 aluminum composite in
a volume fraction of boron fibers c(2) = 0.45. These estimates were extracted from exper­
imental stress-strain curves given in Figs 3 and 4 of Pindera and Lin (1989). The estimate
for the tensile yield strength of the 6061 aluminum matrix k(l) = 48 MPa was extracted
from Fig. 2 of the same reference. The triangles correspond to experimental estimates given
in Table 1 of Kenaga et at. (1987) for the effective off-axis tensile yield strength of a boron­
reinforced 6061 aluminum in a volume fraction of boron fibers C(2) = 0.475. No estimate
for the tensile yield strength of the aluminum matrix was provided in the later reference,
and thus, the value k(l) = 48 MPa was assumed.

For comparison, also shown in Fig. 6 (dotted curve) is the lower bound for the effective
off-axis tensile yield strength of de Buhan et at. (1991). This can be easily determined from
the following expression for rji(LB) for the class of fiber composites with rigid fibers, namely,

(38)

We note that the for low values of () the HS-, the GSC and the CCA estimates are
very close, and all three of them underestimate the corresponding experimental estimates.
On the other hand, for large values of e, the HS - and the GSC estimates demonstrate good
agreement with the experimental data points. In particular, we note that these estimates may
be used to obtain equitable approximations for the transverse yield strength (ll = 90) for
fiber-reinforced metal matrices.
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6. CONCLUDING REMARKS

We made use of the variational procedure of Ponte Castaneda (1992) to obtain simple
estimates for the effective yield strength domains and the associated effective yield functions
of two-phase rigid-perfectly plastic composites. The resulting expressions, in terms of
one dimensional optimization problems, provide a procedure for generating bounds and
estimates for the effective yield functions from corresponding bounds and estimates avail­
able for the class of linear elastic composites. Applications of the procedure were carried
out for the class of fiber-reinforced composites.

Five explicit estimates, corresponding to the Hashin-Shtrikman upper and lower
bounds, the generalized self consistent estimate, the composite cylinder assemblage and the
self consistent estimate were obtained. The results, in terms of estimates for the effective
yield surfaces in the stress-space, demonstrated the existence of two distinct failure modes:
a matrix mode corresponding to overall yielding of the composite due to yielding of the
matrix in shear loads along or transverse to the fibers, and a fiber mode in which the
composite yields due to simultaneous yielding of the fibers and the matrix under axi­
symmetric loads. Explicit estimates were also obtained for the class of fiber composites with
rigid fibers. The corresponding results from the Hashin-Shtrikman lower bound and the
generalized self consistent model demonstrated favorable agreement with available off-axis
uniaxial tensile tests for boron-reinforced aluminum composites.
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APPENDIX

Bounds and estimates for the effective shear moduli Pd' p" and PP of linear elastic fiber composites made up
of two incompressible isotropic phases. The bounds and the estimates are given in terms of the ratio p = JlIII/Jl(2),
where JlIII ~ Jl I') are the shear moduli of phases I and 2 in volume fractions ell) and c(2) = I-c(l), respectively.
For the generalized self consistent estimate and the composite cylinder assemblage model, phase 2 corresponds to
the fibers and phase I to the matrix.

The Hashin-Shtrikman lower bound for the longitudinal shear modulus may be expressed in the form,

(AI)

The expression for the lower bound for the transverse shear modulus p~HS-) is identical to the one for p~HS-) The
Hashin--Shtrikman upper bound for the longitudinal shear modulus is

(A2)

and it is identical to the expression for p~HS+).

The generalized self consistent estimate for the longitudinal shear modulus p~GSC) is similar to expression (A I)
for p~,HS-). The corresponding expression for the transverse shear modulus is obtained from the quadratic equation

where

(
PIGSC»)2 (PIGSC))

a(p) -p- +2b(p) ~p- +c(p) = 0,
Jl(l) Jl(ll

a = 2(1- (C(2»4)p + 4c(2)ap' + (C(l)4 (I + p'),

b = 2C(2 ) (a ~ 1)(1- p2),

C= - [2(1- (CI21 )4)p +4c'2l x + (C(lI)4 (1 + p')],

(A3)

(A4)

and where a = 2 - 3c(2) + 2(C(2»2.
The estimate for the longitudinal shear modulus from the CCA model p~CCA) is also similar to expression

(AI) for p~HS-), and the corresponding expression for the upper bound for the transverse shear modulus is

pICCA) = JlII) 2(1- (C I2»4)p +4C'2Ixp2 + (C(I»4 (1 + p2)

P (I +p)2 _(C(2»4(1_p)2 -2c(2)(a-I)(1-p')'
(A5)

where x is given in (A4).
The SCS estimate for the longitudinal shear modulus is obtained from the positive root of the quadratic

equation

(
PIS.CS»)2 (I) (PISCSI) I-"- +(CII )-c(2» - -I -"- - - = 0,
Jl(l) p Jl(l) p

(A6)

and it is identical to the estimate P~SCS) for the transverse shear modulus.
Finally, the expression for the shear modulus Pd is identical in all the models mentioned above, and may be

expressed in the form

(A7)


